Overload: Difference between revisions

Jump to navigation Jump to search
m
no edit summary
mNo edit summary
mNo edit summary
Line 1: Line 1:
[[Overload]] (Also known as Overload Deformation, Brinelling, and True Brinelling) is where a bearing's [[Raceway|raceways]] get permanent indentations at the ball pitch as a result of exceeding the static load limit of the raceway material. The indentations match the ball shape and are usually surrounded by a build-up formed by displaced material.
[[Overload]] (Also known as Overload Deformation, Brinelling, and True Brinelling) is where a bearing's [[Raceway|raceways]] get permanent indentations at the ball pitch as a result of exceeding the static load limit of the raceway material. The indentations match the ball shape and are usually surrounded by a build-up formed by displaced material.
[[File:Overload Indentations on Raceway at Ball Pitch - SKF.jpg|thumb|none|Indentations at ball pitch on the raceway. The distance between the indentations is at rolling element pitch. skf.com ]]
[[File:Overload Indentations on Raceway at Ball Pitch - SKF.jpg|thumb|none|Indentations on the raceway at ball pitch. skf.com ]]


Freestyle skateboarding, by its very nature, does not limit itself to just rolling, so when we do [[:Category:Rail Tricks|Rail Tricks]], we are applying [[Axial|axial]] forces as well. The static overloading and shock loads from [[:Category:Rail Tricks|rail tricks]] tend to cause overload deformation because it can easily exceed the [[Axial|axial]] load limit of bearings that were really only designed to withstand [[Radial|radial]] forces.
Freestyle skateboarding, by its very nature, does not limit itself to just rolling, so when we do [[:Category:Rail Tricks|Rail Tricks]], we are applying [[Axial|axial]] forces as well. The static overloading and shock loads from [[:Category:Rail Tricks|rail tricks]] tend to cause overload deformation because it can easily exceed the [[Axial|axial]] load limit of bearings that were really only designed to withstand [[Radial|radial]] forces.
Cookies help us deliver better freestyle-related content. By using our services, you agree to our use of cookies and promise to practice your footwork everyday.

Navigation menu